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Abstract. Combinatory Categorial Grammar (CCG) is a grammar formalism
used for natural language parsing. CCG assigns structured lexical categories to
words and uses a small set of combinatory rules to combine these categories in
order to parse sentences. In this work we describe and implement a new approach
to CCG parsing that relies on Answer Set Programming (ASP) — a declarative
programming paradigm. Different from previous work, we present an encoding
that is inspired by the algorithm due to Cocke, Younger, and Kasami (CYK). We
also show encoding extensions for parse tree normalization and best-effort pars-
ing and outline possible future extensions which are possible due to the usage
of ASP as computational mechanism. We analyze performance of our approach
on a part of the Brown corpus and discuss lessons learned during experiments
with the ASP tools dlv, gringo, and clasp. The new approach is available in the
open source CCG parsing toolkit AspCcgTk which uses the C&C supertagger as
a preprocessor to achieve wide-coverage natural language parsing.

1 Introduction

Parsing is the task of recovering the structure of sentences which is an important task in
natural language processing (NLP). Contemporary NLP systems often process input in
a ‘pipeline’ consisting of sequential steps of chunking, part-of-speech tagging, parsing,
semantical annotation, and further steps. A widely-used technique in such pipelines is
to statistically select a single best result of one stage and feed it to the next one.

However many natural language effects cannot be handled satisfactorily with such
an approach, because natural language ambiguities can emerge in various levels of pro-
cessing and some of them can only be resolved on other levels. For example the sentence

“John saw the astronomer with the telescope.” (1)

admits two structures, intuitively one where John used a telescope to see the astronomer,
and one where John saw an astronomer who had a telescope. On the other hand,

“John saw the astronomer with the dog.” (2)

cannot only have the structure such that John saw an astronomer who had a dog. These
sentences both have a syntactic ambiguity: whether the with-clause modifies ‘saw’ or
‘the astronomer’. In (2) semantic information about “dog”, i.e., that it can (usually) not



be used as a “tool for seeing”, rules out the structure where ‘John performed the action
of seeing by means of the dog’. On the other hand (1) can only be disambiguated using
contextual information from the world or from previous or following sentences.

These examples show that, to make sense of natural language, a bidirectional in-
tegration of natural language processing modules is necessary. Answer Set Program-
ming (ASP) [3,7] is a declarative logic programming formalism which is well-suited to
serve as computational formalism for NLP tasks: ASP programs can contain (i) guesses,
which support modeling ambiguities of any kind; (ii) definitions of auxiliary concepts,
which support modeling processes of natural language (in particular compositionality),
and (iii) constraints which support modeling of linguistic constraints on all phenomeno-
logical levels.

In this work we describe an efficient encoding for parsing Combinatory Categorial
Grammar (CCG) using ASP. CCG is a popular grammar formalism used in natural lan-
guage parsing, which assigns structured categories to words of a sentence and uses a
set of combinatory rules to combine these categories and to parse the sentence. Dif-
ferent from previous work [22] which modeled CCG parsing as action planning we
here propose an encoding that is inspired by the CYK algorithm [12, 19, 33] and per-
forms the major computational effort already within instantiation of the program. The
combinatorial power of ASP is used for reasoning about parse tree shapes, parse tree
normalizations [9,15,32], best-effort parsing and further possible extensions, e.g., [23].

Our main contributions are:

– we describe an adaptation of CYK algorithm for CCG parsing and give an encoding
which builds a CYK chart during instantiation of the ASP encoding;

– we provide an encoding for enumerating parse trees based on the above encoding;
– we show how normalizing constraints for CCG can be realized as an additional

ASP program module;
– we describe an extension of our encoding that supports best-effort parsing, i.e.,

providing maximal coverage of the input if no full parse tree is possible;
– we report on experiments which show that our approach provides reasonable pars-

ing times and compare the new encoding to the previous approach for CCG parsing
with ASP [22] and to the C&C parser;

– we discuss several lessons learned and interesting observations gained from this
application of ASP.

An extension of the encodings presented in this work are released as version 0.4 of the
open source CCG parsing toolkit ASPCCGTK1 which uses the C&C supertagger [10]
to achieve wide coverage and can visualize multiple CCG parse trees [22].

2 Preliminaries

CCG. A Combinatory Categorial Grammar (CCG) [29] is a tupleG = (Σ,N, S, f,R)
with Σ a finite set of terminal symbols, N a finite set of atomic categories, S ∈ N the
start category, f a function mapping from terminal symbols to complex categories, and

1 http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk/



R a finite set of combinatory rules. Complex categories are defined as follows: every
atomic category is a complex category; given complex categories A and B, A/B and
A\B are complex categories; nothing else is a complex category.

A combinatory rule (also called combinator) is of the form

X1 . . . Xn

C
A (3)

where A is a symbol indicating the name of the rule and C , X1, . . . , Xn are categories:
we call X1, . . . , Xn the precondition categories of A and C the result category of A.

English can be parsed with the following combinators [29]: forward and backward
application (> and <, respectively), forward and backward composition (>B and <B),
forward and backward type raising (>T and <T), backward cross composition, back-
ward cross substitution, and coordination.

We limit the presentation of our work to the following set of combinators.

A/B B
A >

A/B B/C
A/C >B

A
B/(B\A) >T

B A\B
A <

B\C A\B
A\C <B

A
B\(B/A) <T

These combinatory rules are rule schemas with one or two preconditions, called unary
and binary combinators, respectively, in the following. In this work we only consider
the syntactic side of these combinators and disregard the semantic operations (following
principles of combinatory logic) which are associated with combinators.

We use A, B, C, . . . to denote variables in CCG rule schemas. CCG derivation is
defined in terms of a function f which maps terminal symbols to CCG categories, and
in terms of substitution of adjacent CCG categories by instantiations of combinators.
Formally the CCG derivation relation⇒ contains for all α, β ∈ (N ∪Σ)?

(i) αCβ ⇒ αcβ for terminal symbol c ∈ Σ and category C ∈ f(c) i.e., the terminal
symbol c is mapped to category C by f , furthermore

(ii) αCβ ⇒ αX1 · · ·Xnβ for an instantiation of a combinatory rule A∈R of form (3).

The language generated by a CCG G is the set {α ∈ Σ? | S ⇒? α} where⇒? is
the transitive closure of⇒.

A derivation S ⇒? α can be considered as a set of parse trees: “S” is the root of
a tree, a tree node is either the category C on the left side of (i) or (ii) above; a tree
node generated by (i) has one child which is terminal c; a node generated by (ii) has an
ordered sequence of children X1, . . . , Xn; in-order traversal of the tree leafs yields α.

The problem of enumerating parse trees is to obtain all distinct parse trees given α.
In the following we will call a natural language input a ‘sentence’ and the terminal

symbols of such an input we will call ‘tokens’.2

2 Using the term ‘word’ can be misleading: what we call ‘sentence’ is sometimes called ‘word’,
words such as “it’s” can become multiple tokens, and punctuation symbols are tokens as well.



Example 1. The sentence “The dog bit John” with f such that f(“The”) = {NP/N},
f(“dog”) = {N}, f(“bit”) = {S\NP , (S\NP)/NP}, f(“John”) = {NP} can be
derived using combinators > and < as follows:

The
NP/N

dog

N

NP
>

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

where lines below tokens of the sentence show derivations of type (i), i.e., mappings
using f ; lines below show derivations of type (ii), i.e., instantiations of combinators.
Note that f provides two categories for “bit” corresponding to the ambiguity between
the intransitive and transitive reading of the verb “to bite”.

ASP. Answer set programming (ASP) [3, 7, 25, 27] is a declarative programming for-
malism based on the answer set semantics of logic programs [18]. The idea of ASP is to
represent a given computational problem by a program whose answer sets correspond
to solutions, and then use an answer set solver to generate answer sets for this program.
A common methodology in ASP is called GENERATE-DEFINE-TEST [24]: the GENER-
ATE part of a program describes a collection of answer set candidates; the TEST part
consists of constraints that eliminate candidates that do not correspond to solutions; the
DEFINE part defines concepts in terms of other concepts.

We will present this work using the ASP-Core-2 language [8] of which we introduce
a subset on the following example: given as a set of facts of form edge(X,Y ) encoding
a graph, a typical logic program for solving the 3-colorability problem looks as follows:

vertex (X)← edge(X, ).
vertex (Y )← edge( , Y ).

1≤{ color(X, red), color(X, green), color(X, blue) }≤ 1← vertex (X).
← color(X1, C), color(X2, C), edge(X1, X2).

The first two rules DEFINE vertex in terms of edge (‘ ’ symbols are anonymous
variables); the third rule GENERATEs one color for each vertex; the fourth rule performs
a TEST: it is a constraint which eliminates candidate solutions where two adjacent ver-
texes have the same color.

Variables are universally quantified over rules; a logic program is generally evalu-
ated by (i) grounding it, i.e., instantiating all variables with terms that contain no vari-
ables, and (ii) searching for an answer set using methods related to SAT solving [17]. In
this work we will use uninterpreted function symbols, e.g., in addition to constants pro-
grams can contain function terms. We use this to represent non-atomic CCG categories:
r(“S”, “S”) and l(r(“S”, “NP”), “NP”) represent S/S and (S/NP)\NP , respectively.

Additionally we use count aggregates as literals in rule bodies: intuitively the literal
2≤#count { X : pred(X,Y ) }≤ 4 is true iff the set of substitutions for variable X
such that pred(X,Y ) is true in the answer set candidate has cardinality 2, 3, or 4.

For a detailed description of ASP-Core-2 and for semantics of ASP we refer to [8].



3 Realizing CCG parsing with CYK in Answer Set Programming

A sentence α with n tokens is presented to our CCG parser encoding as a set of facts
of the form catFor(C,P ) where C specifies the CCG category and P the token posi-
tion: P ∈{1, . . . , n}. Intuitively these categories are obtained from statistical tagging;
a parser must select a single category at each position for generating a parse tree. Given
a sentence α we denote by inp(α) its encoding in terms of token categories.

Example 2 (ctd.). “The dog bit John” has n=4 tokens and inp(“The dog bit John”)=
= {catFor(l(“NP”, “N”), 1), catFor(“N”, 2), catFor(l(“S”, “NP”), 3),

catFor(r(l(“S”, “NP”), “NP”), 3), catFor(“NP”, 4)}
CYK for CCG. The CYK algorithm was originally proposed for parsing Context Free
Grammar in Chomsky Normal Form [12, 19, 33], i.e., grammars with rules of the form
A ⇒ BC (corresponding to binary CCG combinators) and A ⇒ c (corresponding
to application of the function f ) only, where A, B, and C are nonterminals, and c
is a terminal. An adaptation for parsing grammars which also contain rules of the form
A⇒ B (corresponding to CCG type raising) has been discussed in [21], in [30] specific
problems of parsing CCG with CYK are discussed.

Algorithm 1 shows an adaptation of CYK to parse CCG in the spirit of [21]; Figure 1
visualizes a CYK chart and possible combinator applications for n = 3 tokens.

3.1 Building a CYK Chart via ASP Grounding

The ASP encoding we present in the following realizes Algorithm 1 such that a CYK
chart for the given input is computed during program instantiation. To that end we
present a non-ground encoding where identifiers starting with a capital letter denote
variables and ‘ ’ denotes anonymous variables.

We represent contents of chart cells C ∈TI,J using predicate grid(I, J, C). Corre-
sponding to line 2 of Alg. 1 we fill diagonal cells TD,D with f(aD) using rule

grid(D,D,C)← catFor(C,D). (4)

We track applicability of unary (lines 2 and 10) and binary (line 8) combinators using
predicates applicableU and applicableB , resp.: applicableU (R, I, J, C ′, C) represents
that combinator R can be applied to category C in cell TI,J and yields category C ′ in
the same cell; applicableB(R, I, J,H,C ′, X, Y ) represents that combinator R can be
applied to categories X and Y in cells TH,J and TI,H+1, resp., and yields category C ′

in TI,J (see also Fig. 1). We next give examples for encoding combinators >T and >:

applicableU (“>T”, I, J, r(B, l(B,A)), A)←
grid(I, J,A), raiseCategory(A,B).

[
A

B/(B\A) >T
]

(5)

applicableB(“>”, I, J,H,A, r(A,B), B)←
grid(H,J, r(A,B)), grid(I,H +1, B).

[
A/B B

A
>

]
(6)

We define categories resulting from applicable rules to be part of the chart using rules

grid(I, J, C)← applicableU ( , I, J, C, ).
grid(I, J, C)← applicableB( , I, J, , C, , ).

(7)



Algorithm 1: CYK adapted for CCG Parsing
Input: CCG G=(Σ,N, S, f,R); token sequence α= a1, . . . , an ∈ Σ? with n ≥ 1

1 for d = 1, . . . , n do // initialize diagonal cells (d, d) using f and unary combinators in R

2 Td,d := f(ad)∪
{
B′ | A′ ∈ f(ad) and A

′

B′ is an instantiation of a combinator A
B

in R
}

3 for i=2, . . . , n do // iterate columns i from left to right
4 for j= i− 1, . . . , 1 do // iterate rows j from bottom to top
5 Ti,j := ∅
6 for h= j, . . . , i− 1 do // iterate distance of source cells from left and from top

7 foreach combinator B C
A in R do

8 if B′ ∈Th,j and C′ ∈Ti,h+1 and A′,B′, C′ can instantiate A,B, C then
9 Ti,j := Ti,j ∪ {A}

10 Ti,j := Ti,j ∪
{
B′ | A′ ∈Ti,j and A

′

B′ is an instantiation of a combinator A
B

in R
}

11 if S ∈ T1,n then return yes else return no

A/B B
A >

AA/B

B

T1,1 T2,1 T3,1

T2,2 T3,2

T3,3

Ti,jTh,j

Ti,h+1

Fig. 1. CYK chart visualization for input sentence with 3 tokens and for > combinator.

This concludes the deterministic non-ground programΠCYK which consists of rules (4)
to (7). Intuitively this encoding defines applicability from chart cells as lines 2, 8 and 10
of Alg. 1 do, furthermore it defines that categories that result from applying combinators
are again part of chart cells.

Given a sentence α, program inp(α)∪ΠCYK has a single answer set I which rep-
resents the CYK chart for α as produced by lines 1 to 10 of Alg. 1.

For space reasons we here do not present type conversion (e.g.,N⇒NP ) and punc-
tuation rules (e.g., to handle commas) as described in [11, Appendix A]; these features
are necessary for wide-coverage parsing and they are implemented in ASPCCGTK.
Language Membership. We can check whether an input is part of the language by
checking whether cell (n, 1) contains category S, e.g., using the following constraint:

← not grid(n, 1, “S”). (8)

or by performing an ASP query (see Section 4 on Magic Set experiments).

3.2 Enumerating Parse Trees

We next describe an encoding for enumerating all parse trees of a given input. We
achieve this by (i) guessing which applicable combinators are applied and (ii) restricting



the guess to a tree such that the chosen combinators form edges, input tokens are leaves,
and category “S” in cell (n, 1) is the root node.

For each applicable combinator we guess whether it is applied or not:

0≤{ applyB(R, I, J,H,X, Y, Z) }≤ 1← applicableB(R, I, J,H,X, Y, Z).
0≤{ applyU (R, I, J,X, Y ) }≤ 1← applicableU (R, I, J,X, Y ).

(9)

To ensure that the above guess induces a parse tree, we first define reachability of cate-
gories in cells from other categories via applied combinators.

reach(H,J,Cleft)← reach(I, J, C), applyB( , I, J,H,C,Cleft , ).
reach(I,H +1, Cdown)← reach(I, J, C), applyB( , I, J,H,C, , Cdown).
reach(I, J, CsameCell)← reach(I, J, C), applyU ( , I, J, CsameCell , C)

(10)

We ensure that the guess is restricted to parse using the following rules

reach(n, 1, “S”)← (11)
← valid(I, I),#count{ C : reach(I, I, C), catFor(C, I) }≤ 0 (12)

← applyB( , I, J, , C, , ),not reach(I, J, C)
← applyU ( , I, J, C, ),not reach(I, J, C)

(13)

← valid(I, J), 2≤#count{ C : applyU ( , I, J, C, ) }
← valid(I, J), 2≤#count{ C : applyB( , I, J, , C, , ) } (14)

These rules define the root category “S” to be reachable (11), require that each word is
reachable (12), disallow unreachable combinators to be applied (13), and disallow more
than one binary (resp., unary) combinator application in one cell (14).

By ΠTree we denote rules (9) to (14). ΠTree follows the classical GENERATE-
DEFINE-TEST approach: it guesses a subset of applicable combinators (9), defines a
notion of reachability (10)-(11), and restricts the guess to certain trees (12)-(14).

With ΠTree we can enumerate parse trees: given an input sentence α the answer
sets of program inp(α)∪ΠCYK ∪ΠTree correspond 1-1 to the CCG parse trees of α.

Note that we do not use f in our encoding, instead we use f to generate inp(α); this
is because f corresponds to statistical tagging which is handled outside of our encoding.
Parse Tree Normalization. CCG generates spurious parse trees which are not of inter-
est because they provably lead to the same linguistic interpretation as other parse trees;
this can only be avoided by normalization of parse trees [9, 15, 32] which is performed
by constraining the shape of CCG parse trees depending on the type of combinator used
to create each tree node. For example, using the category resulting from >T as the first
prerequisite of > can always be replaced by a single application of <. Fortunately such
constraints can be represented easily in ASP, the above normalization is encoded as

← applyB(“>”, I, J,H, , L, ), applyU (“>T”, I,H, L, ). (15)

Such normalizations can eliminate an exponential number of spurious parse trees [15].
Thanks to the modularity of our encoding we can maintain multiple sets of normalizing
constraints (e.g., to normalize towards left- or right-branching) and simply add them to
our program when needed without changing rules in the encoding.



Best-Effort CCG Parsing. If a sentence has no parse tree it can be useful to obtain a
best-effort parse forest. This can be done with respect to various optimization criteria,
e.g., finding a minimum of root nodes for a set of parse trees which contains all tokens
of an input or ignoring a minimum of input tokens. Our parser encoding allows us to
perform such best-effort parsing with only small modifications. For example we can
create a parser that enumerates (i) complete parse trees if one exists, otherwise (ii)
partial parse trees with a minimum number of root nodes such that all input tokens are
reachable. This is achieved by replacing (11) with the following set of rules:

0≤{ guessReach(I, J, C) }≤ 1← grid(I, J, C).
reach(I, J, C)← guessReacch(I, J, C).

#minimize{1 : guessReach(I, J, C)}.
(16)

4 Experimental Evaluation

For performance evaluation we used Section A of the Brown corpus [16] which is a
freely available English language corpus. We selected Section A because it contains
newspaper articles and the C&C supertagger we use for tagging the input is trained on
a newspaper corpus. Section A contains 4611 sentences in total, Table 1 groups these
sentences in terms of their length, e.g., the corpus contains 684 sentences with a length
between 11 and 15 words (inclusive) where the average sentence length is 13.

Our experiments were performed similar as the C&C parser operates when parsing a
sentence: we obtain tags of probability class β=0.075, 0.03, and 0.001 from the C&C
supertagger, then we run our encoding on categories obtained with β≥ 0.075, if this
does not yield a parse tree we retry with β≥ 0.03, then with β≥ 0.001, and we register
failure if even this does not yield a parse trees.

Where not otherwise indicated we used GRINGO version 3.0.5 and CLASP3 version
2.1.1 for experiments; some experiments were performed with DLV4 version 2012-12-
17. We used a timeout of 300 seconds and enumerated up to 100 parse trees for each
sentence, this was done in single threaded mode on a Linux server with 32 2.4GHz
Intel R© E5-2665 CPU cores and 64GB memory.

Table 1 reports the number of CCG tags required to parse a sentence (if no parse was
found the value for β=0.001), the number of parse trees obtained for each sentence,
and the percentage of sentences where a parse tree was found. For example, sentences
with 11-15 words required 25 tags for parsing on average, each sentence yielded on
average 38 parse trees, and 84.9% of sentences yielded at least one parse tree.
Comparison with planning approach. We compare our approach (CYK+ASP) with
the ASP formulation for CCG parsing that uses planning [22]. The CYK algorithm is
a (dynamic programming) approach, therefore in a CYK chart partial parse trees can
be reused between complete parse trees. This is not possible in the planning approach
which requires the notion of time to define an order of combinator applications.

Table 1 reports performance of the planning approach: experiments show that the
CYK approach scales much better than planning, especially for larger sentences. Perfor-
mance is similar only for the shortest group of sentences, for sentences of length 21-25

3 http://potassco.sourceforge.net/
4 http://www.dlvsystem.com/



Group: words in sentence # 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41+

Sentences in group # 983 684 779 704 526 396 258 281
Words in sentence avg # 5 13 17 22 27 32 37 48

CCG categories† avg # 14 25 37 48 59 77 87 122
Parse Trees avg # 6 38 65 81 80 80 79 72
Sentences with parse tree % 64.2 84.9 84.7 85.9 82.1 81.1 79.1 73.0

CYK+ASP parse time avg sec 0.6 0.7 1.2 1.9 3.5 6.7 11.9 42.0
CYK+ASP timeouts # 0 0 0 0 0 0 0 8

Planning+ASP parse time avg sec 0.8 4.3 19.1 62.1 110.1 135.7 156.5 205.5
Planning+ASP timeouts # 0 0 4 51 137 157 118 149
† Category set with smallest β value that is sufficient for finding a parse tree, β = 0.001 if
no parse tree can be found with tags provided by the C&C supertagger.

Table 1. Performance comparison on Section A (newspaper) of Brown corpus using C&C for
tagging. Times and timeouts are for the task of enumerating up to 100 parse trees per sentence.

the CYK approach gives an answer within 1.9 seconds while planning requires more
than one minute. Moreover, the planning approach suffers from timeouts already with
sentences of length 16-21 while the CYK approach has no timeout for any sentence
smaller than 41 tokens.

The CYK approach requires a maximum of 1.5GB of memory with an average of
1.1GB over all sentences, where as the planning approach requires up to 5.8GB of
memory with an average of 3.8GB.
Parse Effort Profile. Figure 2 gives a diagram of parsing time for all sentences in our
benchmark, first grouped by the β value required to find a parse tree, then by the time
required to enumerate up to 100 parse trees. E.g., 2596 sentences obtain a parse tree
with β=0.075 and 3639 out of 4611 sentences obtain a parse tree with β≥ 0.001. We
plot total time required (dashed red) and solver time required (solid blue).

The graph shows that parse time is not distributed evenly among the sentences in
the benchmark: a majority of sentences can be parsed in a comparatively short time, in
particular for sentences with the most probable tags (β=0.075), while there are few
sentences in the benchmark that take a disproportionately high amount of time. There
is only a weak correlation between difficulty of a sentence and its length or amount of
tags (not shown), therefore additionally plotting the amount of tags and/or the length of
each sentence in the figure would make it unreadable. Furthermore we see that solving
time is negligible compared to grounding time.

Additionally we measured the time for groundingΠCYK and the time for grounding
ΠCYK ∪ΠTree (not shown here); these times are nearly the same independent from the
length of the input. This shows that the main computational effort is due to ΠCYK .
Comparison with C&C. The popular C&C parser is designed as a highly efficient
CCG wide coverage parser [11, 13] and it operates on the same C&C tagger output as
our parser. This makes it suitable for a comparison: in [13] C&C is reported to parse the
whole section 00 of CCGBank (1913 sentences with a similar distribution of sentence
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Fig. 2. Total time and solve time for parsing Section A of the Brown corpus, grouped by the
tagger β value required to parse each sentence and sorted by parse time (timeout 300 seconds).

lengths as in the Brown corpus) within less than 100 seconds on a slower computer than
ours. Therefore our approach clearly cannot compete with the performance of C&C.
However, the aim of this work was not to build the fastest parser, but to build a flexible
parser with reasonable performance that can return multiple parse trees and can easily
be extended with reasoning capabilities that go beyond what C&C can do.
Stratification and DLV vs GRINGO+CLASP. Apart from benchmarking with GRINGO
and CLASP we also considered DLV. Our first observation was that DLV does not recog-
nize our encoding to be finitely groundable due to rule (5) and other raising rules which
contain a higher level of function symbol nesting in their head than in the body. How-
ever due to the raiseCategory predicate (which does not depend on the applicableU
predicate in the head of (5)) the program clearly has a finite instantiation and using DLV
with the option -nofinitecheck leads to a finite grounding.

In an early version of the encoding, computing the set of possible categories of
a token was performed with a non-stratified rule. With this encoding, DLV performed
consistently better than GRINGO for the task of grounding. Replacing this rule by a few
stratified rules changed the situation: now DLV produced a slightly smaller grounding in
about the same time, but GRINGO became so much faster that it consistently performed
better than DLV. (All results in this paper were produced using GRINGO+CLASP and
the stratified encoding.) We conclude that efficiency of GRINGO is very sensitive to
program structure while for DLV we could not observe this in our benchmarks.
Queries and Magic Sets. As ΠCYK is stratified it is possible to use Magic Sets [1]
for efficient query evaluation, e.g., the query ‘grid(n, 1, “S”)?’ checks whether a parse
tree exists. Such a check is important to see whether a given set of tags is sufficient
for finding a parse tree, or whether the β value needs to be reduced to obtain more
tags. Unfortunately, using DLV with Magic Set for the above query led to much longer
grounding times than using DLV without Magic Set; the reason is not clear to us yet.
Grounding vs Solving. Finally we experimented with putting some of the tree normal-
ization constraints, e.g., (15), already into the ΠCYK encoding. This requires to define
exceptions to rule applicability, therefore the CYK encoding becomes more compli-



cated (it is still stratified). The result of this experiment is a reduced grounding size and
(with GRINGO) a significantly increased grounding time. As the time spent in grounding
and solving ofΠTree (including all normalization constraints) is negligible, we reverted
to the simpler CYK encoding with larger and faster grounding. We conclude that elimi-
nating solutions in solving can perform significantly better than making a program more
complex in order to eliminate those solutions already in grounding, even if the complex
program has a smaller instantiation.

5 Related Work

CCG-based systems OPENCCG [31] and TCCG [4,5] (implemented in the LKB toolkit)
can provide multiple parse trees for a given sentence. Both use chart parsing algorithms
with CCG extensions such as modalities or hierarchies of categories. While OPENCCG
is primarily geared towards generating sentences from logical forms, TCCG targets
parsing. However, both implementations require lexicons with specialized categories.

The wide-coverage CCG parser C&C [9, 10] relies on machine learning techniques
for tagging an input sentence with CCG categories as well as for computing the single
most likely parse tree with an efficient chart algorithm. In ASPCCGTK we reuse the
CCG supertagger of C&C to obtain CCG categories, we also compare ASPCCGTK to
C&C performance.

The Grail parser [26] is based on multi-modal categorial grammar (which is able to
represent CCG) and contains a graphical user interface for ‘interactive parsing’. Grail
uses theorem proving techniques based on the Lambek calculus, this makes it very
expressive but slow in some cases; therefore in some cases the user must support the
search for a parse tree in the user interface. Compared to our work, Grail is more general
and has different aims, e.g., being a tool for learning about Lambek calculus.

Transforming context free grammars (CFGs) in Chomsky Normal Form (CNF) us-
ing the CYK algorithm and parsing them using SAT solvers has been studied under
the name “GRAMMAR constraint” [20, 28], including recent work based on ASP [14].
Results indicate that SAT and ASP solving can perform well for parsing using the CYK
algorithm. Two important differences between these studies and our work are: (i) CFGs
use atomic categories and a large set of rules that forms the grammar, while CCG uses
structured categories and a small set of rule schemas, hence performance observations
might not directly carry over and encodings must be significantly different; moreover
(ii) our work is about natural language parsing while GRAMMAR studies experiment
with artificial grammars that encode solutions to Shift Scheduling problems.

Parsing CCG with CYK is not polynomial if categories are represented explicitly,
however recording only changes of categories can make it polynomial [30]; we here
represent categories explicitly and consider a more involved encoding as future work.

6 Conclusion

We have presented an encoding for parsing CCG in ASP which — as opposed to a pre-
vious approach, and as opposed to usual ASP methodology — puts the major effort of
computation into instantiation of the representation. This increased effort of grounding



allows the search for an answer set to be fast, empirical results show that the new ap-
proach consistently outperforms the former approach that used planning. Experiments
show that our approach provides reasonable performance for using it in practice.

The possibility to trade search effort for grounding effort is due to the CYK algo-
rithm which has been around for a long time and can be realized in ASP in a natural
way. This approach of gaining efficiency goes against the declarativity of ASP, because
our encoding effectively prescribes a way of grounding that reproduces the data struc-
ture generated by CYK. Nevertheless the result is a parsing framework that profits from
the declarative nature of ASP because reasoning modules that operate on parse trees
(i.e., normalization, semantic disambiguation) can be tightly and modularly integrated
with the parser without significant changes to the parser encoding.
Future Work. In the future we want to adapt ASPCCGTK to become compatible with
Boxer [6] which is a tool for creating semantic representations for sentences in first or-
der logic. Integration with Boxer opens new possibilities for NLP tasks where multiple
readings of a sentence must be considered, e.g., for Recognizing Textual Entailment
(RTE) or Semantic Evaluation (SemEval) Challenges.

We have done preliminary work on disambiguation of parse trees using semantic
information [23], e.g., from FRAMENET [2], such that the large number of parse trees
(our experiments enumerated up to 100 trees per sentence) can be reduced to those
trees which are consistent with semantic restrictions (see examples in the introduction).
In the future we want to continue work in that direction.

If better efficiency becomes an issue, using techniques from [30] and computing the
CYK chart in C++ and enumerating parse trees with constraints in ASP are possibilities.

Finally our CYK encoding could be useful for benchmarking ASP grounders.
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